Saturday, 9 November 2013

No SQL

No SQL
  • A NoSQL database provides a mechanism for storage and retrieval of data that employs less constrained consistency models than traditional relational databases. 
  •  NoSQL databases are finding significant and growing industry use in big data and real-time web applications.
  •   NoSQL systems are also referred to as "Not only SQL" to emphasize that they may in fact allow SQL-like query languages to be used.

NoSQL encompasses a wide variety of different database technologies and were developed in response to a rise in the volume of data stored about users, objects and products, the frequency in which this data is accessed, and performance and processing needs. Relational databases, on the other hand, were not designed to cope with the scale and agility challenges that face modern applications, nor were they built to take advantage of the cheap storage and processing power available today. 

The Benefits of NoSQL

When compared to relational databases, NoSQL databases are more scalable and provide superior performance, and their data model addresses several issues that the relational model is not designed to address:
  • Large volumes of structured, semi-structured, and unstructured data
  • Agile sprints, quick iteration, and frequent code pushes
  • Object-oriented programming that is easy to use and flexible
  • Efficient, scale-out architecture instead of expensive, monolithic architecture

NoSQL Database Types

  • Document databases pair each key with a complex data structure known as a document. Documents can contain many different key-value pairs, or key-array pairs, or even nested documents.
  • Graph stores are used to store information about networks, such as social connections. Graph stores include Neo4J and HyperGraphDB.
  • Key-value stores are the simplest NoSQL databases. Every single item in the database is stored as an attribute name (or "key"), together with its value. Examples of key-value stores are Riak and Voldemort. Some key-value stores, such as Redis, allow each value to have a type, such as "integer", which adds functionality.
  • Wide-column stores such as Cassandra and HBase are optimized for queries over large datasets, and store columns of data together, instead of rows.

No comments:

Post a Comment